Skip to product information
1 of 3
  • Play video

Zizi - Queering the Dataset #3, 2019

by Jake Elwes

Digital video, ERC-721 token, MP4 / h264

1024 x 1024 px

About the artist

Jake Elwes (b.1993) is an artist living and working in London. They studied at The Slade School of Fine Art, UCL (2013-17). Searching for poetry and narrative in the success and failures of AI systems, Jake Elwes investigates the aesthetics and ethics inherent to AI. Elwes’ practice makes use of the sophistication of machine learning, while finding illuminating qualities in its limitations. Across projects that encompass moving-image installation, sound and performance, Elwes seeks to queer datasets, demystifying and subverting predominantly cisgender and straight AI systems. While it may seem like the AI is a creative collaborator, Elwes is careful to point out that the AI has neither intentionality or agency; it is a neutral agent existing within a human framework.

Jake’s work has been exhibited in museums and galleries internationally, including the Victoria and Albert Museum, London; Somerset House, London; ZKM, Karlsruhe, Germany; Today Art Museum, Beijing; Yuz Museum, Shanghai; Pinakothek der Moderne, Munich; Frankfurter Kunstverein; Fotomuseum Winterthur, Switzerland; Honor Fraser Gallery, LA; Fundacion Telefonica Museum, Madrid; Ars Electronica, Austria; Zabludowicz Collection, London; Sculpture in the City, London; Science Gallery Dublin; RMIT Gallery, Melbourne; Onassis Foundation, Athens; Arebyte Gallery, London; E-WERK Freiburg, Germany; Museum für Naturkunde, Berlin; Nature Morte, Delhi, India; Centre for the Future of Intelligence, UK and they have been featured on TV: ZDF aspekte (Germany) and the BBC Arts (UK).

About the Artwork

Zizi - Queering the Dataset aims to tackle the lack of representation and diversity in the training datasets often used by facial recognition systems. The video was made by disrupting these systems** and re-training them with the addition of drag and gender fluid faces found online. This causes the weights inside the neural network to shift away from the normative identities it was originally trained on and into a space of queerness. Zizi - Queering the Dataset lets us peek inside the machine learning system and visualise what the neural network has (and hasn’t) learnt. The work is a celebration of difference and ambiguity, which invites us to reflect on bias in our data driven society.

The Zizi Project (2019 - ongoing) is a collection of works by Jake Elwes exploring the intersection of Artificial Intelligence (A.I.) and drag performance. Drag challenges gender and explores otherness, while A.I. is often mystified as a concept and tool, and is complicit in reproducing social bias. Zizi combines these themes through a deepfake, synthesised drag identity created using machine learning. The project explores what AI can teach us about drag, and what drag can teach us about A.I. **A Style-Based Generator Architecture for Generative Adversarial Networks (2019).

 Jake Elwes looks for poetry and narrative in the success and failures of these systems, while also investigating and questioning the code and ethics behind them. 'Zizi - Queering the Dataset' is on view at Gazell.io in London in Summer 2021. It was originally commissioned by The University of Edinburgh in 2019 for Experiential AI at Edinburgh Futures Institute and Inspace. His work has also been exhibited in museums and galleries internationally, including the ZKM, Today Art Museum and Victoria and Albert Museum.

Verisart certified: https://verisart.com/works/jake-elwes-b4bd2ce0-de7e-4397-a889-ca20aac4b0ed  

Details

File size: 37 MB

Contract Address: 0xb932a70A57673d89f4acfFBE830E8ed7f75Fb9e0

Token Standard: ERC-721

Blockchain: Ethereum

Purchase on SuperRare
Zizi - Queering the Dataset
Zizi - Queering the Dataset